(Préparez $g = 10 \text{ m/s}^2$ où il le faut)

Nucléaire

1. Les particules qui sont déviées par un champ électrique sont :
 a) particules gamma; b) particules bêta ; c) particules neutrons ; d) particules alpha.

2. 10 % d'un matériau radioactif se désintègrent en 5 jours. Soit P le pourcentage du matériau restant après 20 jours et λ la constante radioactive du matériau radioactif.
 a) $\lambda = 0.46 \text{ jour}^{-1}$; b) $\lambda = 0.32 \text{ jour}^{-1}$; c) $P = 55\%$; d) $P = 35\%$.

3. Lorsque des neutrons lents se rapprochent suffisamment d'un noyau ^{235}U, le processus qui se produit est :
 a) fission du noyau ^{235}U; b) fusion du noyau ^{235}U avec les neutrons ; c) réaction provoquée; d) réaction spontanée.

4. Dans la réaction nucléaire: $^{12}\text{C} \rightarrow ^{11}\text{B} + \beta^+ + X$, X représente :
 a) un antineutrino ; b) un neutrino ; c) un proton ; d) un rayonnement gamma.

5. L élément radioactif strontium ^{90}Sr produit des noyaux yttrium ^{90}Y. La réaction nucléaire de désintégration du strontium ^{90}Sr est :
 a) une radioactivité β^+ ; b) une réaction spontanée ; c) une radioactivité β^- ; d) une réaction provoquée.

6. En 2014, un capteur Geiger mesure l'activité d'une source de strontium ^{90}Sr, de demi-vie 29 ans. Il indique 100 Bq. On retrouve, dans un papier ancien, que l'activité de cette même source était de 400 Bq. Soient λ la constante radioactive du strontium ^{90}Sr et X l'an pendant lequel ce papier a été écrit.
 a) $\lambda = 0.034 \text{ an}^{-1}$; b) $\lambda = 0.024 \text{ an}^{-1}$; c) X: 1956; d) X: 1927;

Les données suivantes peuvent être utilisées dans les trois questions suivantes:

\[
1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}; \quad c = 3.00 \times 10^8 \text{ m.s}^{-1}; \quad 1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}; \quad m(\text{U}^{235}) = 235,044 \text{ u}; \quad m(\text{Kr}^{90}) = 89,920 \text{ u}; \quad m(\text{Ba}^{142}) = 141,916 \text{ u}; \quad m_a = 1,009 \text{ u}. \quad \text{Nombre d'Avogadro}: \quad N_A = 6,02 \times 10^{23} \text{ noyaux/mole}.
\]

7. Une réaction nucléaire pouvant se produire lorsqu'un neutron lent entre en collision avec un atome d'uranium est la suivante : $^{235}\text{U} + ^{1}\text{n} \rightarrow ^{90}\text{Kr} + ^{142}_8\text{Ba} + y ^{1}\text{n}$.
 a) Il s'agit d'une réaction de fusion; b) Il s'agit d'une réaction de fission; c) $z = 56$ et $y = 3$; d) $z = 56$ et $y = 4$.

8. pour la réaction de l'exercice 7,
 a) Le défaut de masse de cette réaction est $\Delta m = 0.181 \text{ u}$; b) Le défaut de masse de cette réaction est $\Delta m = 1.190 \text{ u}$; c) L'énergie libérée par cette réaction est de l'ordre de : $E = 170 \text{ MeV}$; d) L'énergie libérée par cette réaction est de l'ordre de : $E = 5.63 \text{ eV}$.

9. Dans une centrale électrique à énergie nucléaire, le réacteur nucléaire a une puissance de 100 MW. Dans ce réacteur, le noyau d'uranium 235 peut subir d'autres types de réactions que celle de l'exercice 7. L'énergie moyenne libérée par noyau est de 185 MeV. Soient E_1 l'énergie libérée par la consommation de 1 kg d'uranium 235 et Δt le temps nécessaire pour consommer le 1 kg d'uranium 235.
 a) $E_1 = 7,58 \times 10^{10} \text{ J}$; b) $E_1 = 7,58 \times 10^{13} \text{ J}$; c) $\Delta t = 8,77 \text{ jours}$; d) $\Delta t = 877 \text{ jours}$.

Electricité

10. Un circuit RLC série se compose d'une résistance de 2,5 kΩ, d'une bobine d'inductance 0,08 H et d'un condensateur de capacité 50 µF. Le circuit est alimenté par un générateur délivrant une tension alternative sinusoïdale de fréquence 79,6 Hz avec une tension maximale \(U_m = 100 \) volts.
 a) La pulsation propre \(\omega_0 = 500 \) rad/s; b) Le courant et la tension aux bornes du générateur sont déphasés; c) Le courant et la tension aux bornes du générateur sont en phase; d) La pulsation propre \(\omega_0 = 1000 \) rad/s.

11. Pour le même exercice (10):
 a) L'intensité maximale du courant a une valeur \(I_m = 28,3 \) mA; b) L'intensité maximale du courant a une valeur \(I_m = 40 \) mA; c) La puissance moyenne dissipée dans le circuit est: \(P = 4 \) W; d) La puissance moyenne dissipée dans le circuit est: \(P = 2 \) W.

12. Un condensateur de capacité \(C \) est chargé en le branchant en série avec un conducteur ohmique de résistance \(R \) aux bornes d'une batterie délivrant une tension constante \(U \). Soit \(i \) et \(q \) respectivement l'intensité du courant dans le circuit et la charge du condensateur après un temps \(t \). \(i \) et \(q \) sont donnés par :
 \[U(1 - e^{-tR/C}/R); \quad i = U(e^{-tR/C}/R); \quad q = CU(1 - e^{-tR/C}); \quad q = CU(e^{tR/C}). \]

13. Dans un circuit en courant alternatif, \(v \) et \(i \) sont donnés par : \(u = 100 \sin(100t) \) et \(i = 0,1 \sin(100t + \pi/3) \) (\(u \), \(i \) et \(t \) sont en SI). La puissance moyenne dissipé dans le circuit est \(P \).
 a) \(P = 2,5 \) W; b) \(P = 5 \) W; c) le courant \(i \) est en avance de phase par rapport à la tension \(u \); d) le courant \(i \) est en retard de phase par rapport à la tension \(u \).

14. Un transformateur est utilisé pour transformer les 220 V en 11 V. La bobine primaire est parcourue par un courant d'intensité efficace 5 A et la bobine secondaire par 90 A. La bobine primaire est formée de 1000 spires. Soit \(N_2 \) le nombre de spires de la bobine secondaire et \(\rho \) l'efficacité du transformateur.
 a) \(N_2 = 50 \) spires; b) \(56 \) spires; c) 9%; d) 90%.

15. Une bobine d'inductance \(L \) est branchée en série, avec un interrupteur \(K \), un conducteur ohmique de résistance \(R \) aux bornes d'une batterie délivrant une tension constante \(U \). \(K \) est fermé à \(t = 0 \). Quels sont les deux graphes parmi lesquels qui représentent la variation dans le temps de la tension \(u_R \) à travers la résistance et la tension \(u_C \) aux bornes de la batterie.

![Graphes](attachment:image.png)

a) graphe a; b) graphe b; c) graphe c; d) graphe d.

16. Un circuit RC série est constitué d'une batterie de f.e.m 6 V et de résistance interne \(r = 2,5 \) Ω connecté en série avec un conducteur ohmique de résistance de \(R = 12,5 \) Ω et un condensateur non chargé de capacité \(C \) et d'un interrupteur \(K \). À \(t = 0 \), on ferme \(K \), et nous obtenons la figure ci-contre. À \(t = 0 \), l'intensité du courant est \(I_0 \).
 a) \(I_0 = 0,40 \) A; b) \(U_0 = 6 \) V; c) \(I_0 = 0,48 \) A; d) \(U_0 = 5 \) V.

17. En étudiant le graphe du l'exercice précédent:
 a) la courbe (1) représente la tension aux bornes du conducteur ohmique;
 b) la capacité \(C \) du condensateur est de 1,2 mF; c) la courbe (1) représente la tension aux bornes du condensateur;
 d) la capacité \(C \) du condensateur est 1,0 mF.
18. Une bobine est formée de 1000 spires, chacune de surface 4 cm². La bobine est placée dans un champ magnétique uniforme \(\mathcal{B} \) d'intensité \(\mathcal{B} = 0.05 \, t + 0.01 \, \text{; B en (T) et t en (s)} \). La normale \(\mathbf{n} \) et \(\mathcal{B} \) sont orientées comme l'indique la figure. Le flux magnétique \(\phi \) à travers la bobine exprimé en weber et la tension \(u_{AM} \) mesurée, en V, par un oscilloscope sont données par :

a) \(\phi = -0.02 \, t + 0.004 \); b) \(\phi = 0.02 \, t + 0.004 \); c) \(u_{AM} = -0.02 \, V \); d) \(u_{AM} = 0.04 \, V \).

Mécanique

19. Une force \(F = 5 \, N \) est appliquée à une balle de 3 kg pour changer sa vitesse de +9 m/s à +3 m/s. Cette force provoque une variation \(\Delta P \) de la quantité de mouvement pendant un intervalle de temps \(\Delta t \).

a) \(\Delta P = -18 \, \text{kg.m/s} \); b) \(\Delta t = 3.6 \, \text{s} \); c) \(\Delta P = 18 \, \text{m/s}^2 \); d) \(\Delta t = 1.8 \, \text{s} \).

20. Un mobile, de masse \(m \) et libre de se déplacer en ligne droite sur un support horizontal, est attaché à un ressort de raideur \(k = 40 \, \text{N.m}^{-1} \). Les frottements sont négligeables. On a enregistré les variations de la position du centre du mobile au cours du temps (Figure ci-contre). Soient \(E_m \) l'énergie mécanique du système corps-ressort et \(T_0 \) la période propre de ses oscillations.

a) \(E_m = 0.05 \, J \); b) \(E_m = 500 \, J \); c) \(T_0 = 0.32 \, \text{s} \); d) \(T_0 = 0.63 \, \text{s} \).

21. Soient \(V_m \) la vitesse maximale du corps mobile de l'exercice 20 et \(\omega_0 \) la pulsation propre des ces oscillations.

a) \(\omega_0 = 10 \, \text{rad/s} \); b) \(\omega_0 = 0.1 \, \text{rad/s} \); c) \(V_m = 0.5 \, \text{m/s} \); d) \(V_m = 5 \, \text{m/s} \).

22. Soient \(x(t) \) l'équation horaire du mouvement de l'oscillateur et \(m \) la masse du corps mobile de l'exercice 20.

a) \(m = 4 \, \text{kg} \); b) \(x(t) = 5 \sin (10 \, t) \); (x: cm and t: s); c) \(m = 0.4 \, \text{kg} \); d) \(x(t) = 5 \cos (10 \, t) \); (x: cm and t: s).

23. La raideur d'un ressort horizontal de masse négligeable est 16 N/m. Un corps de masse \(m = 1 \, \text{kg} \), attaché au ressort est tiré horizontalement de 5 cm puis relâché sans vitesse initiale. Soit \(E_{\text{cinmax}} \) l'énergie cinétique maximale du système (corps-ressort) et \(V_0 \) la vitesse du corps lorsqu'il atteint sa position d'équilibre.

a) \(E_{\text{cinmax}} = 2 \times 10^{-2} \, \text{J} \); b) \(V_0 = 0.2 \, \text{m/s} \); c) \(E_{\text{cinmax}} = 4 \times 10^{-2} \, \text{J} \); d) \(V_0 = 0.28 \, \text{m/s} \).

24. Un bloc de 1.2 kg et un autre bloc de 1.8 kg sont initialement au repos sur une surface horizontale sans frottement. En relâchant un ressort comprimé entre les blocs, le bloc de 1.8 kg se déplace vers la droite avec une vitesse \(V_1 = 2 \, \text{m/s} \) comme illustré. Soit \(V_2 \) la vitesse du bloc de 1.2 kg après que le ressort soit relâché et soit \(W \) l'énergie emmagasinée dans le ressort.

a) \(1.4 \, \text{m/s} \); b) \(3 \, \text{m/s} \); c) \(W = 9 \, \text{J} \); d) \(W = 1.8 \, \text{J} \).

Optique et atome

25. Une figure de diffraction obtenue par une seule fente est obtenue sur un écran à l'aide d'une lumière jaune. Si la lumière jaune est remplacée par une lumière bleue sans apporter d'autres changements au bâton expérimental, que se passera-t-il pour les taches (franges) de diffraction ?

a) l'expérience met en évidence la nature particulaire de la lumière ; b) les taches deviendront plus larges et plus écartées ; c) l'expérience met en évidence la nature ondulatoire de la lumière ; d) les taches deviendront plus étroites et plus rapprochées.
26. Si une source de lumière blanche est utilisée dans l'expérience des deux fentes de Young, que se passera-t-il pour les franges d'interférences?
 a) aucune frange ne sera obtenue ; b) plusieurs franges seront obtenues comme dans le cas d'une lumière monochromatique, mais elles seront colorées sauf le centre de la frange centrale qui sera blanche ; c) pour obtenir le phénomène d'interférences la lumière doit être cohérente ; d) nous pouvons obtenir le phénomène d'interférence avec toute source lumineuse monochromatique.

27. Dans l'expérience des deux fentes (Fentes de Young), la distance entre les deux fentes est de 1 mm et la distance entre les fentes et l'écran est de 1 m. Les fentes sont éclairées par une lumière monochromatique de longueur d'onde \(\lambda = 600 \text{ nm} \). Soit i la séparation entre deux franges lumineuses consécutives et d la séparation entre les \(2^{\text{èmes}} \) franges sombres de part et d'autre de la frange centrale.
 a) i = 0.6 mm; b) 1.2 mm; c) 1.8 mm; (d) 3.6 mm.

28. La longueur d'onde seuil pour l'effet photoélectrique pour le sodium est de 500 nm. Un faisceau de lumière monochromatique de fréquence \(10^{15} \text{ Hz} \) est incident sur une cathode de sodium. Prendre \(c = 3 \times 10^8 \text{ m/s} \) et \(h = 6.6 \times 10^{-34} \text{ Js} \). Soit \(W_S \) le travail de sortie de la cathode de sodium et soit \(E \) l'énergie du photon incident.
 a) \(W_S = 4 \times 10^{-19} \text{ J} \); b) \(6.6 \times 10^{-19} \text{ J} \); c) \(W_S = 1.2 \times 10^{-10} \text{ J} \); d) \(E = 6.6 \times 10^{-12} \text{ J} \).

29. Pour le même exercice (28)
 a) l'énergie cinétique maximale d'un photoélectron est égale à \(5.2 \times 10^{-12} \text{ J} \); b) l'effet photoélectrique montre la nature particulaire de la lumière; c) l'effet photoélectrique montre la nature ondulatoire de la lumière; d) l'énergie cinétique maximale d'un photoélectron est égale à \(2.6 \times 10^{-9} \text{ J} \).

30. Le diagramme ci joint montre une série de niveaux d'énergie d'un atome donné. Les niveaux d'énergie sont dessinés verticalement à l'échelle. Lorsque l'atome subit la transition \(E_3 \) à \(E_2 \), une ligne verte est produite dans le spectre visible. Quelle transition (a ou b) produirait une ligne bleue visible? Quelle transition (c ou d) produirait une ligne ultraviolette?
 a) \(E_4 \) à \(E_3 \); b) \(E_4 \) à \(E_2 \); c) \(E_4 \) à \(E_1 \); b) \(E_4 \) à \(E_2 \).
Fiche des réponses (SG)

Mettre √ dans la case correspondant à la ou aux réponse(s) correcte(s) à la question posée.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
</tr>
<tr>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>08</td>
<td>09</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>42</td>
<td>41</td>
<td>40</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>64</td>
<td>63</td>
<td>62</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>75</td>
<td>74</td>
<td>73</td>
<td>72</td>
<td>71</td>
</tr>
<tr>
<td>86</td>
<td>85</td>
<td>84</td>
<td>83</td>
<td>82</td>
</tr>
<tr>
<td>97</td>
<td>96</td>
<td>95</td>
<td>94</td>
<td>93</td>
</tr>
</tbody>
</table>