Exercise 1.

Consider the function f defined by $f(x) = |\ln(x-2)| + (x-4)$ and (C_f) its representative curve in an orthonormal frame $(0, \mathbf{i}, \mathbf{j})$.

- 1. Find the domain of definition of f.
- 2. Calculate $\lim_{x\to 2^+} f(x)$ and determine an asymptote at (C_f) .
- 3. Calculate $\lim_{x \to +\infty} f(x)$ and f(3).
- 4. Determine the expression of the function $g_1(x) = f(x)$ for $2 < x \le 3$ then the expression of the function $g_2(x) = f(x)$ for $x \ge 3$.
- 5. Determine $g_1'(x)$.
- 6. We denote by (C_{g_1}) the curve representative of $g_1(x)$ in (O, i, j). Find the equation of the tangent (T_1) to (C_{g_1}) at the abscissa point x = 3.
- 7. Determine $g_2'(x)$.
- 8. We denote by (C_{g_2}) the curve representative of $g_2(x)$ in (0, i, j). Find the equation of the tangent (T_2) to (C_{g_2}) at the abscissa point x = 3.
- 9. Compare $g'_1(3)$ and $g'_2(3)$. Deduce if *f* is differentiable at x = 3.
- 10. Draw up the variation table of g_1 .
- 11. Show that the equation $g_1(x) = 0$ admits a unique solution α_1 and verify that $2.1 < \alpha_1 < 2.2$.
- 12. Draw up the variation table of g_2 .
- 13. Show that the equation $g_2(x) = 0$ admits a unique solution α_2 and verify that $3.5 < \alpha_2 < 3.6$.
- 14. In order to deduce the graph of (C_f) , draw on the same graph (C_{g_1}) and (T_1) then (C_{g_2}) and (T_2) .

Exercise 2.

A player has a balanced die whose sides are numbered from 1 to 6, and three urns, U_1, U_2 and U_3 each containing *n* balls, where *n* denotes a natural number greater than or equal to 3. We note that the urn U_1 contains 3 black balls, urn U_2 contains 2 black balls and urn U_3 contains 1 black ball.

When the player rolls the dice:

- If he gets the number 1, he randomly takes a ball from the urn U_1 , notes its color, and puts it back in U_1 .
- If he gets the number 3 or 6, he randomly takes a ball from the urn U_2 , notes its color and puts it back in U_2 .
- If the number brought up by the die is neither 1, nor 3, nor 6, he randomly takes a ball from the urn U_3 , notes its color and puts it back in U_3 .

We denote by A, B, C and N the following events:

- A: "The die brings number 1".
- B: "The die brings 3 or 6".
- C: "The die brings up a number which is neither 1, nor 3 and nor 6".
- N: "The drawn ball is black".
- 1. The player plays a game.
 - a. Calculate P(N|C).
 - b. Show that the probability that he obtains a black ball is equal to $\frac{5}{2\pi}$.
 - c. Calculate the probability that the dice brought 1 giving that the drawn ball is black.
 - d. Determine *n* so that the probability of obtaining a white ball is greater than $\frac{1}{2}$.
 - e. Determine n so that the probability of obtaining a black ball is equal to $\frac{1}{30}$.
- 2 In this question, *n* is chosen such that the probability of getting a black ball while playing a game is equal to $\frac{1}{30}$. The player plays 2 games, independent of each other. Calculate the probability that he will get a black ball at least once.