Exercise 1.

Consider the function f defined by $f(x)=|\ln (x-2)|+(x-4)$ and $\left(C_{f}\right)$ its representative curve in an orthonormal frame $(0, \boldsymbol{i}, \boldsymbol{j})$.

1. Find the domain of definition of f.
2. Calculate $\lim _{x \rightarrow 2^{+}} f(x)$ and determine an asymptote at $\left(C_{f}\right)$.
3. Calculate $\lim _{x \rightarrow+\infty} f(x)$ and $f(3)$.
4. Determine the expression of the function $g_{1}(x)=f(x)$ for $2<x \leq 3$ then the expression of the function $g_{2}(x)=f(x)$ for $x \geq 3$.
5. Determine $g_{1}{ }^{\prime}(x)$.
6. We denote by $\left(C_{g_{1}}\right)$ the curve representative of $g_{1}(x)$ in $(0, \boldsymbol{i}, \boldsymbol{j})$. Find the equation of the tangent $\left(T_{1}\right)$ to $\left(C_{g_{1}}\right)$ at the abscissa point $x=3$.
7. Determine $g_{2}{ }^{\prime}(x)$.
8. We denote by $\left(C_{g_{2}}\right)$ the curve representative of $g_{2}(x)$ in $(O, \boldsymbol{i}, \boldsymbol{j})$. Find the equation of the tangent $\left(T_{2}\right)$ to $\left(C_{g_{2}}\right)$ at the abscissa point $x=3$.
9. Compare $g_{1}^{\prime}(3)$ and $g_{2}{ }^{\prime}(3)$. Deduce if f is differentiable at $x=3$.
10. Draw up the variation table of g_{1}.
11. Show that the equation $g_{1}(x)=0$ admits a unique solution α_{1} and verify that $2.1<\alpha_{1}<2.2$.
12. Draw up the variation table of g_{2}.
13. Show that the equation $g_{2}(x)=0$ admits a unique solution α_{2} and verify that $3.5<\alpha_{2}<3.6$.
14. In order to deduce the graph of $\left(C_{f}\right)$, draw on the same graph $\left(C_{g_{1}}\right)$ and $\left(T_{1}\right)$ then $\left(C_{g_{2}}\right)$ and $\left(T_{2}\right)$.

Exercise 2.

A player has a balanced die whose sides are numbered from 1 to 6 , and three urns, U_{1}, U_{2} and U_{3} each containing n balls, where n denotes a natural number greater than or equal to 3. We note that the urn U_{1} contains 3 black balls, urn U_{2} contains 2 black balls and urn U_{3} contains 1 black ball.

When the player rolls the dice:

- If he gets the number 1 , he randomly takes a ball from the urn U_{1}, notes its color, and puts it back in U_{1}.
- If he gets the number 3 or 6 , he randomly takes a ball from the urn U_{2}, notes its color and puts it back in U_{2}.
- If the number brought up by the die is neither 1 , nor 3 , nor 6 , he randomly takes a ball from the urn U_{3}, notes its color and puts it back in U_{3}.
We denote by $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and N the following events:
- A: "The die brings number 1".
- B: "The die brings 3 or 6 ".
- C: "The die brings up a number which is neither 1 , nor 3 and nor 6 ".
- N : "The drawn ball is black".

1. The player plays a game.
a. Calculate $P(N \mid C)$.
b. Show that the probability that he obtains a black ball is equal to $\frac{5}{3 n}$.
c. Calculate the probability that the dice brought 1 giving that the drawn ball is black.
d. Determine n so that the probability of obtaining a white ball is greater than $1 / 2$.
e. Determine n so that the probability of obtaining a black ball is equal to $\frac{1}{30}$.
2. In this question, n is chosen such that the probability of getting a black ball while playing a game is equal to $\frac{1}{30}$. The player plays 2 games, independent of each other. Calculate the probability that he will get a black ball at least once.
